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ABSTRACT

The digital era has led to an unprecedented increase in the amount of information available,
of which an essential part is represented by visual data. The data forensics community asks
for machine solutions to face the proliferation of image data. This thesis addresses the spe-
cific problem of distinguishing two-dimensional map images from other image content by
examining two computational methods: Convolutional Neural Networks (CNNs) and Bag
of Words (BOW). No information about current automated solutions for the mentioned task
is available. The CNN used in this research consists of 60 million parameters and 650,000
neurons in eight weighted layers, is pre-trained on 1,000 classes, and provides an immense
learning capacity. The BOW method uses a visual vocabulary, constructed by clustering
higher-level image information, to classify unknown images by comparing their contained
visual words with a content-specific vocabulary of a classifier. Both methods are evaluated
in terms of recall and precision, or percentage of correctly and incorrectly classified im-
ages. The data collection consists of 1,200 map images called positives, subdivided into
four sub-classes, and an additional 1,200 images without map content, called negatives.
Results with a recall up to 99.17% and corresponding precision up to 97.01% support the
idea of implementing CNN and BOW as the backbone of a computer-based classification
application.
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Executive Summary

The digital era has led to an unprecedented increase in the amount of information avail-
able. Over the past decades, digital data has begun to replace–or at least to complement–
traditional systems of information exchange and storage. Interpreting and analyzing this
data has become a challenge to the individuals, companies, and institutions who could ben-
efit. Today, an essential part of this increase of digital data is represented by visual data,
produced by traditional digital cameras or cameras integrated into smartphones, tablets,
and computers. The proliferation of visual data is a special challenge for the data foren-
sics community, which therefore seeks machine solutions. This thesis addresses the spe-
cific problem of distinguishing two-dimensional map images from other image content by
examining two computational, state-of-the-art methods: Convolutional Neural Networks
(CNNs) and the Bag of Words (BOW) method.

The idea of BOW is introduced for text classification problems by Harris (1954) and later
adapted to computational methods by, for example, Joachims (1998). By counting the
occurrence of words in a document, the resulting vocabulary histogram can give significant
evidence about the content. A visual vocabulary can be constructed by computing robust
descriptors on detected interest points in all training images and clustering the descriptors;
the clusters become the visual words. A classifier, trained with labeled input images and
describing them with the visual vocabulary, can then evaluate the similarity between a new,
unknown image and the trained classes, by examining the descriptor histogram of the new
image.

CNNs, the second method examined, find access to computer applications during the early
1990s for tasks like word and character recognition (Bengio et al., 1994; LeCun & Bengio,
1994). They are introduced to image content detection and classification (LeCun & Bengio,
1995; Nowlan & Platt, 1995) and used for face detection and recognition. With the increase
of computational power they become the focus of a great deal of research for classification
tasks in huge image datasets containing millions of pictures. Consisting of 60 million
parameters and 650,000 neurons in eight weighted layers and pre-trained on 1,000 classes,
the CNN used in this research offers an immense learning capacity.

xv



The data collection for this evaluation consists of 1,200 map images called positives, di-
vided into sub-classes including basic maps, pilotage charts, web maps, and sketches. Ad-
ditionally, 1,200 images without map content, called negatives, are chosen from ImageNet
(Krizhevsky et al., 2012) to complete the dataset. The performance of CNN and BOW is
evaluated either by the observed rates for correct and incorrect classifications or by recall
and precision. Recall is defined by the proportion of correctly classified positives (true pos-
itives) in comparison to the overall number of positives. Precision shows the proportion of
true positives among all images classified as positives, which provides information about
the number of negatives within the predicted positive classifications.

Both methods produce recalls up to 99.17% on tasks with two classes. BOW’s best preci-
sion of 97.01% tops the CNNs by over 3.5%. Trained on sub-classes, the results using a
CNN are either biased in favor of overrepresented sub-classes, if the training set is imbal-
anced, or the low number of training images in the balanced scenario trains generally less
reliable classifiers. A possible solution is a balanced dataset with substantially more train-
ing data, which can be gathered by either augmenting the underrepresented sub-classes, or
raising the number of sub-class images by intensifying the online-search for images. With
up to 100% correct classifications, BOW can generate a remarkable result on one of the un-
derrepresented sub-classes. Instead, on image quantity, the performance of BOW depends
much more on the specific, descriptor-related image information and on intra-class vari-
ability. Faced with web maps, a sub-class with high intra-class variability, and sketches,
mainly images with low descriptive content, BOW produces misclassification rates up to
22.5%.

For the specific task of classifying the map image space as spanned by the sub-classes
described in this work, both approaches can become the backbone of helpful applications,
especially if the map search is comparable to looking for a needle in a haystack. A CNN
provides an immense learning capacity and can be trained on a huge class and sub-class
spectrum. BOW can become a useful alternative, whenever training data is rare.

xvi
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CHAPTER 1:

Introduction

1.1 Background

This section discusses the problem of distinguishing two-dimensional map images from
other image types as a result of a tremendous increase in today’s information data. The
impact of the human visual system on this increase of data is illuminated and the field of
computer vision with its efforts to reproduce the human’s sensory abilities for machine
applications is introduced. Finally, the meaning of the term map is defined because of its
specific interest for this work.

The digital era has led to an unprecedented increase in the amount of information available.
Interpreting and analyzing this data has become a challenge to the individuals, companies,
and institutions who could benefit. Where human abilities are overwhelmed, machines
must assist in the process. The proliferation of image data is a special challenge. Data

forensics, in particular, is overly reliant on manpower for image classification and inter-
pretation, and seeks machine solutions. Image processing and understanding have been
classic tasks in the field of computer vision, and much progress has been made in recent
years. Research has come closer to bridging the semantic gap (Dorai & Venkatesh, 2003)
between low-level image features like color and shape and the human visual system by
improving image features and methods. This thesis addresses the specific problem of dis-
tinguishing two-dimensional map images from other image content by examining two state-
of-the-art methods: Convolutional Neural Networks (CNNs) and the Bag of Words (BOW)

method. The results support the idea of implementing CNNs and BOW as the backbone of a
computer-based classification application, but they also point to weaknesses and necessary
additional research.

The term information explosion was introduced by Maron (1961) to describe the increas-
ing spread of published data. Over the past decades, digital data has begun to replace–or
at least to complete–traditional systems of information exchange and storage like books,
photographic films, and sound and video tapes. The new possibilities of generating digital
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data worldwide, instantaneously, and without special training through the use of multime-
dia devices has led to an unprecedented, emerging documentation of mankind’s action and
the universal environment (PennyStocks.la, 2015; Sweeney, 2001). This tremendous in-
crease in the volume of available digital data makes information detection, classification,
and evaluation a costly and time-consuming process.

This massive growth of data could not only be seen as a problem for today’s standard com-
puter user, for whom it might be annoying to waste time searching for a three-week-old
social network message or a selfie made last year. It is even more of a challenge for com-
panies, organizations, and institutions that rely on some kind of data analysis. Facing their
user’s expectations of the outcome of search engines or legal requirements for provided
data content, their failure could mean the loss of money or have even more serious conse-
quences. If the security of individuals, equipment, infrastructure, or even organizations and
social systems depends on critical information, finding indications of sensitive intelligence
in digital data could lead to saving lives. Analyzing the data to simply determine whether
the needed information is available can easily become a challenging task. For example, it
can take two weeks to plan and conduct a drug search. But it could take an analyst a month
to inspect terabytes of confiscated digital data, with no guarantee that the data has been
interpreted correctly. This opens up discussion about a reliable automated computational
alternative for data inspection.

Seeing is an essential skill for most creatures (Horridge, 1987) and it is the most impor-
tant human sense for information gathering (San Roque et al., 2015). Therefore, it is not
surprising that an essential part of the mentioned increase of digital data is represented
by visual data, as shown in Figure 1.1. This kind of data is easily stored and shared via
the Internet and produced by using traditional digital cameras or cameras integrated in
smartphones, tablets, and computers. With respect to the human ability to see, learning
by and training through the visual observation of one’s environment are lifelong processes,
given healthy reception and mental skills. The perception system allows a person to filter
unimportant content and to interpret the remaining information by identifying objects and
analyzing their relations and behavior. In addition, it allows the prediction of the future of
the observed system, all in the context of the observer’s position and actions. This process
does not rely on an actual, real-world experience, but can also be realized by looking at a

2



Figure 1.1: Minute-by-minute Internet data tra�c from December 2013 showing the signi�cant
portion of image and video data transfers via Youtube, Facebook, and Flickr as primary platforms
from Infographic (2015)

digital image. The proverb “a picture is worth a thousand words” points to the amount of
information a human being can extract from a single visual scene.

It is the goal of the field of computer vision to reproduce, with the exception of predicting
the future, the sensory abilities described here by, for example, adapting scientific findings
about human perception from fields like psychology or art (Machajdik & Hanbury, 2010) to
mathematical algorithms and computational methods in the context of artificial receptors.
Reliable solutions exist for individual problems in the field of machine vision (Yammen &
Muneesawang, 2014), but failures are still an existing challenge for computer vision sys-
tems as discussed, for example, by Zhang et al. (2014). Therefore, an universal “artificial
image analyst” seems to be still beyond the horizon of even state-of-the-art methods. Fac-
ing the problem of the data expansion described previously, it is essential to invent new
methods as shown in Divvala et al. (2014) and to improve existing ones, to provide the nec-
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essary automated computational solutions for existing large image collections (see, e.g., in 
Szeliski (2010), pp. 719-720, table 14.1, “Image databases for recognition” and table 
14.2, “Image databases for detection and localization”) .

The word map is an umbrella term for an abstract representation of a specific spatial align-
ment of objects or data. The usage of this word can be found in several fields of science and
areas of life. It is not limited to something drawn but can also be represented by words, as
shown in Figure 1.2. The meaning of a specific map is defined by its thematic context, the
most common being the geography of the Earth with respect to the physical characteristics,
especially the surface features, of an area. But maps also exist for the human body, star sys-
tems, the Moon, business relations, sociology, religious distributions or historical events,
and processes like battles and wars. The variety of maps is remarkable (About.com, 2015)
and they have served mankind for thousands of years (Wolkenhauer, 1895) to do what they
were originally invented for: to be helpful tools for orientation and planning.

Figure 1.2: A map of words, showing related words to the initial term �class.� Visual Thesaurus

connects over 145,000 English words and 115,000 meanings. Clicking on a related word brings this

word to the new center of the graph and produces the speci�c relations. Infographic, D.(2015)
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1.2 Scope of This Thesis
The research objective of this thesis is the performance evaluation of two automated
computer-based methods given the task of classifying geographical map images in a
dataset. This work limits geographical map images to content defined by topographical fea-
tures of a given region. Two state-of-the-art recognition and classification approaches are
examined, BOW and CNN. This work is focused on recall and precision as a performance
parameters and therefore, reliable evidence about the image content is more important than
computational speed.

This thesis excludes all map-related sub-classes that have no geographical reference (e.g.,
fantasy maps from games) or that focus on very specific content like weather or industry.
The training and evaluation dataset is created based on publicly available data from digital
sources and with respect to the relevance of a sub-class in accordance with the research
objective in context of data forensics. By defining the relevant map sub-classes, collecting
the data, and evaluating the two classification methods on the chosen dataset, this thesis
considers the following research questions:

• What kinds of maps are relevant to data forensics?
• What sub-classes of maps must be contained in the dataset?
• Are there any special types of sub-classes that significantly weaken a classifier in its

performance?
• Which of the two chosen classification methods performs better with respect to recall

and precision?
• What factors influence the detection outcome?
• Can the chosen methods become useful applications in the field of data forensics?
• What challenges were found and what is their impact on future work?

The presented work is ordered as follows: Chapter 2 places this thesis in respect to past
and related work. Chapter 3 explains the composition of the dataset and delivers insights
into the chosen classification methods. Chapter 4 presents the classification results and
discusses the influence of parameters and possible challenges. Finally, conclusions are
provided in Chapter 5, which also offers ideas for future work.
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CHAPTER 2:

Literature Review

A tremendous amount of literature exists focused on image classification tasks, often in
the context of object detection and recognition. Without claiming to be comprehensive,
this chapter briefly discusses the evolution of this literature, which is closely connected to
improvements in the fields of computer science, pattern recognition, and machine learning.
After introducing the image-interpreting work with geographical references, the literature
related to CNNs and BOW is reviewed. Finally, the work on the underlying algorithms for
interest point detection and feature description is discussed.

From the 1970s up to the early 2000s, image retrieval–the reliable access to images in
large databases–was the driving force behind the development of methods for mapping
images to classes. Text-based image retrieval approaches (Chang & Hsu, 1992; Kato, 1992)
refer to image classes by manually or even semi-supervised automatically annotated labels
(Guillaumin et al., 2010). By contrast, content-based image retrieval is focused on low-
level or higher-level features to gain the necessary classification information (Rui et al.
(1999); Vailaya et al. (2001); Serrano et al. (2004)). Jain & Vailaya (1996) introduce an
“image retrieval system which is insensitive to large variations in image scale, rotation, and
translation” (p. 3) for 400 trademark images. They can clearly show that a combination
of color histograms and normalized histograms of edge directions gives a better retrieval
accuracy than the individual usage of these methods. Deb & Zhang (2004) discuss the
development and future challenges in this research field and give an overview about several
content-based image retrieval systems.

The majority of geography-related research of the past decades addresses geographic pat-
tern recognition tasks based on low-level image features like shape and geometric relations
(Baltsavias, 2004; Jang et al., 1997; Janssen et al., 1993). Ganpatrao & Ghosh (2014) give
a remarkable summary of previous work in this field. For their own approach of symbol
and toponym (place name) extraction out of scanned maps, the authors use k-means (Zhang
et al., 1997) for color segmentation followed by outline detection and shape matching to
recognize letters, symbols, and numbers. As opposed to detection and recognition tasks of

7



map objects within a map image, this thesis addresses the classification of an image into
map or not map. Low-level approaches as mentioned above are often tailored to very spe-
cific classification tasks. For example, Vailaya et al. (1998) try to classify city images and
landscapes by selecting features like color coherence vectors or edge direction histograms
based on their discriminative power. The highest accuracy is reached by combinations of
color and shape features whereas they observe that the best feature combinations differ
between city images and landscapes.

The increasing amount and complexity of data motivates the need for research to bridge
the semantic gap between low-level image features and image content interpretation by
humans. Although focused on image retrieval, Liu et al. (2007) provide a good idea of
the bridging task and its challenges. A significant number of scientific papers shows the
steady increase of performance in precision and speed over the last 15 years, especially
solving object classification tasks as demonstrated by Li et al. (2010) or Bilen et al. (2014).
Karpathy & Fei-Fei (2014), for example, find a way to connect segments of sentences with
image regions that they describe. Using several instances of neural networks, they are able
to generate detailed descriptions of classified objects like wooden office desk.

With CNN and BOW, two promising methods are chosen to examine their robustness on
the map classification task. A commonality of the two methods is their so-called global

approach, which means that a single feature representation instance is the input to the
classifier. Even though BOW starts with local features, they are combined into a single,
global histogram of “visual word” frequencies as the image’s feature representation. By
contrast, a component-based approach unites several local elements using a model defining
their relationship as in Felzenszwalb et al. (2010).

Although they were addressing the task of face recognition, Heisele et al. (2003) provide
a good comparison of these ideas in context of detection followed by recognition. Based
on support vector machines (SVM), which were introduced by Vapnik & Chervonenkis
(1964), their two-level component-based approach detects 14 different parts of a face like
eyes or the mouth independently on the first level and then detects the whole face by using
a geometrical configuration classifier on the second level. The face recognition classifier is
finally trained on single feature vectors build out of the ten normalized parts of each train-
ing image. Heisele et al. also introduce two global approaches, where in a first stage both

8



are trained on 3-D head models. They generate “2,457 face images of size 58x58 pixels”
(p. 10) by rotating the heads “between −30 degree and 30 degree in depth” (p. 10). Dur-
ing detection a “sliding window” approach is used; a window of size 58x58 pixels slides
over a pyramid of preprocessed images. Two SVMs are then trained for the recognition
task on images of individuals, whereas the second approach is introduced to address chal-
lenges with intra-class variations caused by changes in the head pose. They show that the
component-based approach outperforms the global methods.

2.1 Classification Methods: CNNs and BOW
The first of the chosen methods for this thesis, BOW, was originally developed for text
classification problems. By counting the occurrence of words in a document, the resulting
vocabulary histogram can give significant evidence about the content. Csurka et al. (2004)
introduce with bag of keypoints a generic approach for a visual vocabulary. After transfer-
ring affine regions around interest points to circular areas for normalization, scale invariant
descriptors are computed on these regions. The visual vocabulary is then constructed by
clustering these descriptors. The resulting classifier uses histograms of this visual vocab-
ulary, computed for each trained class, to compare them to the histogram generated in the
same fashion from the test image. Bag of keypoints is also known as bag of features or,
with respect to its origin, often called bag of words, as in this work. It is widely used in
computer vision today (Jégou et al., 2010; Nowak et al., 2006; Yang et al., 2007).

CNNs, as the second method examined, found its access to computer applications during
the early 1990s for tasks like word and character recognition (Bengio et al., 1994; LeCun &
Bengio, 1994), closely followed by its introduction to image content detection and classifi-
cation (LeCun & Bengio, 1995; Nowlan & Platt, 1995). After recognizing and examining
the usability of CNNs, especially for face detection and recognition tasks (Garcia & De-
lakis, 2004; Lawrence et al., 1997), CNNs came into research focus with the rise of huge
image datasets like ImageNet with millions of pictures (Krizhevsky et al., 2012). Details
about the structure of CNNs and the deep learning process are discussed by Arel et al.
(2010).

9



2.2 Interest Point Detectors and Feature Descriptors
An elementary step for a proper learning and classification process is the selection of in-
terest points and their descriptions, a common task for humans and computer based ap-
proaches. The key is to find a method that is robust against variations which allows a focus
on similar characteristics during the classification step, given (visual) data of the same
class.

Scale Invariant Feature Transform (SIFT) (Lowe, 1999) finds key locations (interest points)
at local maxima and minima from the difference-of-Gaussians in scale space. Therefore an
image is smoothed twice with the Gaussian function and the result of each smoothing iter-
ation is saved. After calculating the difference of the second result from the first smoothing
outcome, maxima and minima are detected by comparing each pixel with its eight neigh-
bors. Scale invariance is achieved by rejecting key locations that cannot transport this
maxima or minima property to the next lower or upper level of the image pyramid. The
orientation of the remaining interest points is “determined by the peak in a histogram of lo-
cal image gradient orientations” (p. 3) and robustness against intensity changes is achieved
“by thresholding the gradient magnitudes at a value of 0.1 times the maximum possible
gradient value” (p. 3). A feature vector is then generated to describe the area around the
key locations by gradient orientation histograms of eight orientation planes.

In their Oriented Fast and Rotated BRIEF (ORB), Rublee et al. (2011) present a method
for interest point detection and description with low computational costs and quality prop-
erties like SIFT. Their approach starts with detecting Features from Accelerated Segment

Test (FAST) points (Rosten & Drummond, 2005) at each level of the image pyramid by
generating the intensity threshold between the center pixel and the pixels around the center.
An orientation is generated by the offset of a corner’s intensity to its, center, the so-called
intensity centroid (Rosin, 1999). The resulting detector is called oFAST (oriented FAST).
Binary Robust Independent Elementary Features (BRIEF) (Calonder et al., 2010) is used as
a descriptor and, by constructing a steered version (steered BRIEF), allowed to be invariant
to in-plane rotations. As steered BRIEF has a lower variance than BRIEF, its discrimina-
tion is worse. In addition, the correlation between the binary tests leads to less contribution
of these tests to the result. Rublee et al. (2011) use a greedy search algorithm “for a set
of uncorrelated tests with means near 0.5” (p. 4). This significantly raises the variance and
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improves the correlation. Their final descriptor, which integrates this learning method in
steered BRIEF, is called rBRIEF (rotated BRIEF).

With Binary Robust Invariant Scalable Keypoints (BRISK) (Binary Robust Invariant Scal-
able Keypoints), Leutenegger et al. (2011) claim to bridge the gap between quality with
respect to invariance of the detector to image transformations and distinctiveness of the
descriptor and the computational speed needed for real-time applications. An interest point
or keypoint is identified by analyzing the saliency scores of the neighbor pixels in the
original scale level “as well as in the immediately-neighboring layers above and below.”
(Leutenegger et al., 2011, p. 3) Such a potential interest point needs to fulfill a maximum
condition. This means that the center pixel is either the brightest or darkest one among its
neighbors in the particular layer and within the corresponding patch in the layers above and
below (which means that this interest point is in general traceable if the scale for an image
changes). The BRISK descriptor is a binary string and built by retrieving gray values from
a sampling pattern which is defined by several sampling locations on “circles concentric
with the keypoint” (p. 3). The characteristic direction of the interest point is determined by
local intensity gradients and the descriptor is finally “assembled via brightness comparison”
(p. 4).

Dalal & Triggs (2005) find with Histograms of Oriented Gradients (HOG) an innovative
descriptor computed on a grid of overlapping cells that are (with the exception of object
orientation) invariant to geometric and photometric transformations. Bay et al. (2006) intro-
duce a scale and rotation-invariant descriptor called Speeded Up Robust Features (SURF)

that combines and simplifies integral images for image convolution with existing state-of-
the-art descriptors and detectors. This interest point detector and feature descriptor is the
backbone of the image analysis with BOW and explained in more detail in the next chapter.
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CHAPTER 3:

Methodology

This chapter illuminates the data collection process in context with the relevance to data
forensics. It also describes the experimental setup of the chosen methods for classifying
geographic map images in a dataset.

3.1 Dataset
The following section narrows the definition of maps with respect to the research objective.
It explains the data collection process for building an image dataset as a foundation for the
training and evaluation phases with BOW and CNN.

3.1.1 Definition and Delimitation
The research objective is the performance evaluation of two automated computer-based
methods with classifying geographic map images in a dataset. More specifically, this work
is interested in classifying those images as maps which contain:

Detailed, accurate graphic representations of features that appear on the 
Earth’s surface. These features include:

• cultural: roads, buildings, urban development, railways, airports,
names of places and geographic features, administrative boundaries,
state and international borders, reserves

• hydrography: lakes, rivers, streams, swamps, coastal flats
• relief: mountains, valleys, slopes, depressions
• vegetation: wooded and cleared areas, vineyards and orchards. (Geo-

science Australia, 2015)

Geographical maps include a broad spectrum of sub-classes, differentiated by vegetation
and climate zones and by variation among surface structures like mountains, plains, and
water. This means that different techniques and styles are required to produce readable
maps. In addition, there exists no standardized set of rules for map design; therefore,
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symbols, geometric shapes, and colors for the same sector of the Earth’s surface may differ
among the producers of maps. This research’s specific interest in data forensics to find
sensible intelligence information leads to a focus on map products which are appropriate
for orientation and planning tasks. This implies a delimitation of the sub-classes. Excluding
sub-classes such as 3-D visualizations, historical maps, nautical charts, or ocean floor maps,
this research focusses on four sub-classes (examples of which are shown in Figure 3.1):

• basic maps, containing pure topographical information, no specific thematic topic is
allowed, no limitations to the kind of terrain

• pilotage charts, which can differ from basic maps in particular by added naviga-
tion corridors and signs, aerodromes, vertical obstructions and areas of special use
airspace

• web maps, which are Internet-based map applications, as designed for example by
Google Maps (Google, 2015b) or Bing Maps (Microsoft, 2015) and

• sketches

Sketches are of special interest in data forensics. This sub-class does not match with the
former description of a map as “detailed, accurate graphic representations” and defines no
specific rules for the creation process. Usually, sketches condense the amount of available
geographic information to a minimum, focusing on the main features to achieve the purpose
they are created for. Therefore, a lot of information is missing (e.g., mostly no color, low
consistency for shapes of the same objects), and, additionally, unusual information is added,
such as drawings of side views or a text passage. But sketches are easy to create with no
more than a piece of paper and a pen and can even serve as a helpful planning tool for
finding your friend’s house–but also for criminals and terrorists.

3.1.2 Data Collection and Dataset Setup
The access to map images for this work is limited to publicly available data from digital
sources. The dataset has to provide a proper mix of sub-class members to guarantee training
descriptors with robustness to variety within a sub-class. Map images in general are not
enthusiastically shared online and some deeper searches are necessary to find the desired
data. A huge number of maps representing the defined geographical space is not accessible,
and most countries do not provide their official map series online for free access. Often,
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Figure 3.1: Examples of chosen map sub-classes; upper left: basic maps, geographical standard
map with no additional information, upper right: pilotage charts, containing navigation corridors
and special air space zones, lower left: web map, Internet-based map applications, as designed
for example by Google Maps or Bing Maps, lower right: sketch, condensed amount of available
topographic information.
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websites of individuals, libraries, and archives are the only available sources.

In general, it is possible to generate a data collection with tens of thousands of map images,
based on publicly available data, given months to search and collect them. Alternatively,
this effort could be crowd-sourced as was done for the ImageNet collection which em-
ployed thousands of Amazon Mechanical Turk workers (Fei-Fei, 2010). The University of
Texas (2015), for example, provides online access to over 40,000 maps; however, many
of them are historical or have a specific subject matter such as climate or resources. With
a limited amount of time to examine an adequate quantity of maps, the data collection
process settled on 1,200 map images called positives. The sub-classes are represented as
follows:

• 400 basic maps–sources: University of Texas (2015) at Austin and Petro Vlasenko
(Vlasenko, 2015)

• 150 pilotage charts–source: University of Texas (2015) at Austin
• 500 web maps–source: Bing Maps (Microsoft, 2015) and Google Maps (Google,

2015b)
• 150 sketches–sources: Google’s image search (Google, 2015a), with the follow-

ing search terms: “area sketch”, “geographic sketch,” “orientation sketch,” “paths
sketch,” “topographic sketch.”

Additionally, images without map content, called negatives, are chosen from ImageNet

(Deng et al., 2009). Although ImageNet provides easy access to roughly 15 million pictures
in 22,000 categories, the number of training and evaluation negatives for this research is
limited to 1,200 in order to balance the dataset. The selection process partially focuses on
categories, which are expected to make the classification process harder because of their
geometric properties. The idea is to examine the classification quality in cases of poor map
content, like rough sketches.

The final negative set contains a composition of classes as shown in Table 3.1. The com-
plete dataset with 1,200 positives and 1,200 negatives is always divided into two sections:
70% for training purposes (840 negatives and 840 positives) and 30% for the evaluation
phase (360 positives and 360 negatives). The impact of hyper-parameter settings is ob-
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served on the same dataset split for training and evaluation. A shuffle of the dataset gives
evidence about the variability of the effectiveness via repetition, given the specific classifi-
cation approach with a fixed hyper-parameter setting.
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ImageNet Description Number
Index Images

n02823848 beer hall 50
n03010473 chassis 50
n0352415 hockey stick 50
n03509843 heat-seeking missile 50
n03171635 defibrillator 50
n07863374 pasta 50
n07862244 bacon and eggs 50
n07840219 caper sauce 50
n07954211 book, rule book 50
n13354021 pocketbook 50
n13863771 line 50
n13864153 convex shape, convexity 50
n13865298 cylinder 50
n13874073 equator 50
n13869788 envelope 50
n13876561 helix, spiral 50
n14785065 bricks and mortar 50
n14820180 concrete 50
n14844693 soil, dirt 50
n14915184 ice, water ice 50
n14975598 papyrus 50
n09287968 geological formation, formation 50
n09344324 lunar crater 50
n09302616 highland, upland 50

Table 3.1: Chosen categories from ImageNet to create the negative set. Categories like line or

convex shape were selected because of their assumed closeness to objects occurring in maps and

their possible in�uence on the classi�cation outcome. None of these images shows a geographic

map.
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3.2 Experiments
This section describes the experimental setup and the process of evaluation of the chosen
BOW and CNN approaches. The detailed work flow is presented for both methods.

3.2.1 Process and Experimental Design–BOW
This subsection describes the generation of a bag of visual words as a basis for the exper-
iments. Four computational steps precede the classification on the evaluation set. Interest
points have to be found in the training set images, and descriptors have to be calculated on
these interest points. The descriptors have to be clustered to form a bag of visual words
and, with these visual words, a classifier has to be trained for each image class based on
the frequency of visual words in the corresponding labeled training images. Two available
implementations, one in MATLAB and the other one in the Computer Vision Algorithm

Collection (CVAC), are examined by this work.

BOW with MATLAB
MATLAB’s CV toolbox (MATLAB, 2014) contains a bagOfFeatures function. It is param-
eterized by:

• the dictionary size (number of visual words)
• the selection method for interest points (either by a detector or by using a grid step

option)
• an option for defining a fixed grid step size
• the orientation of the SURF feature descriptor, which can be fixed upright (so called

U-SURF) or estimated on the feature vector (“rotation-invariant”) and
• the sizes of areas (block width) to calculate U-SURF feature descriptors on a multi-

scale.

The exact experimental setup for training and classification runs with MATLAB can be
seen in Table 3.2. The dataset is examined with different dictionary sizes. From the two
point selection methods, only the grid step option is used for the examination of BOW as
the alternative SURF Detector did not produce usable outcomes on the dataset. The grid
step option has to be specified by a step size within an image (default setting [8 8]), which
reflects the distance in the x and y direction between horizontal and vertical grid lines. The
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intersections of this lines are set as interest points and descriptors are calculated on these
intersections. If not explicitly changed by a user, rotation-variant U-SURF descriptors are
used. Even a rotation of the maps in the images is not expected, this rotation-variance of the
descriptor can effect the visual vocabulary. Local image artifacts such as road intersections,
houses, contour lines etc can occur in any orientation and, by chance, on grid intersections
which define interest points. As one would need only one rotation-invariant descriptor for
all orientations of, e.g., similar-looking road intersections, using U-SURF would lead to
many variant descriptors to match the rotated intersections. So a bigger visual vocabulary
is needed to describe road intersections. As the dictionary size is fix, a rotation-invariant
descriptor would allow more visual words to be used for descriptors of other interest points.

When using the selection method “Detector” for interest points, these points are detected by
using differently scaled box filters which approximate the Gaussian second order deriva-
tives of the covered image region. In MATLAB, a threshold and the filter sizes can be
defined to decide about the occurrence of an interest point. The calculation of a SURF de-
scriptor starts after extracting a reproducible orientation around such an interest point. The
dominant orientation can be determined by the response of Haar wavelets (Haar, 1910) in
x and y direction in a circular area (radius 6 times the interest point detection scale) around
the interest point (Bay et al., 2006). This finally defines the orientation of the square re-
gion that the descriptor is calculated on. The grid step option with U-SURF avoids these
pre-processing steps.

Once descriptors are calculated for all interest points, k-means (Lloyd, 1982) is used to
cluster them with respect to the defined amount of visual words. K-means is an iterative
clustering process that minimizes the sum of distances between all objects and their cluster
centroids (measured in squared Euclidean metric) over all cluster centers. It starts with
k cluster centers (where k represents the defined dictionary size) at random positions and
allocates each object to its nearest cluster center. After this, the cluster centroid is recalcu-
lated with respect to the cluster members. Allocation and recalculation of cluster centroids
is repeated until the sum of all distances is minimized or the defined maximum number of
iterations is reached.

After the construction of this visual vocabulary, a Support Vector Machine (SVM) classifier
for each image class is trained on the labeled training data using the feature vector of each
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image. Simply stated the occurrence of visual words out of the just-clustered bag of words
in a training image of a specific class is observed and used for the training of the related
classifier. Once the classifiers are trained, the evaluation set can be classified.

MATLAB was used to generate confusion tables for the validation of a user-defined per-
centage of training data, just as for the classification of the evaluation set. It is expanded
by a routine that writes, in a case of misclassification, the name of the image, its original
class, and the classification decision into a separate file. This allows an examination of the
probable reasons for the specific misclassification.

Dictionary Grid Step Size Number of Comment
Size Classifiers

25, 50, 100, [16 16], [32 32], 2
250, 500, 1,000 [64 64]

250 [64 64] 2 10 runs with image
shuffling between
training set and
evaluation set

500, 1,000 [16 16], [32 32], 5
[64 64]

Table 3.2: Experimental setup for 40 separate runs to examine MATLAB's BOW implementation

for classifying map images. The number of classi�ers determines whether the training and testing

is conducted on two classes (positives and negatives) or the negatives class with four map sub-

classes.
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BOW with CVAC
The second BOW implementation is accessible via the NPSVisionLab (2015) of the Naval
Postgraduate School (NPS). The Easy Computer Vision Project (EasyCV) “provides ac-
cess to algorithms in the CVAC through well-defined interfaces, it links annotation tools
(LabelMe [Torralba et al. (2010)], VATIC [Vondrick et al. (2013)]) to algorithms, and it per-
mits creation of new detectors and their performance evaluation.” (NPSVisionLab, 2015)
In particular, its linkage to libraries like OpenCV (Bradski, 2000), allows uncomplicated
setup switches with respect to algorithms and methods.

CVAC contains a Python (Python Software Foundation, 2014) BOW demo script which
is used for this work and only has to be adapted to the collected dataset directory. The
provided code is changed with respect to the detector and descriptor settings and completed
with an evaluation and storage procedure for the results. To reduce the variability in the
results for a specific dictionary size, nine repetitions of BOW are run with shuffled data,
using ORB for interest point detection and description with the following dictionary sizes:
5, 10, 25, 50, 100, 250, 500, and 1,000.

Additionally, BOW is evaluated with different detector/descriptor combinations; Table 3.3
provides an overview of the hyper parameter space. Because of time constraints, these runs
are performed on a reduced dataset with 250 visual words, 300 positives, 300 negatives,
and 180 test images, and the explored combinations are not exhaustive as EasyCV offers
other detectors and descriptors, too. It is, for example, possible to combine all detectors
with a grid option that searches for interest points in defined grids. This method also allows
a researcher to limit the number of returned features.

Interest Point Detector Descriptor

ORB, SURF, SIFT, BRISK ORB, SURF, SIFT, BRISK

Table 3.3: Overview of the hyper-parameter space of detector-descriptor constellations for map

image classi�cation with BOW. Training and testing is conducted on a reduced dataset with two

classes (250 visual words, 300 positives, 300 negatives, and 180 test images).
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3.2.2 Process and Experimental Design–CNN

This subsection describes a classification approach based on a pre-trained deep CNN. The
so-called BVLC Reference CaffeNet is built with the Caffe deep learning framework (Jia
et al., 2014) provided by the Berkeley Vision and Learning Center (BVLC). For this work,
the deep CNN is additionally trained with transfer learning on the introduced positives and
negatives and then tested on the evaluation set using the EasyCV library.

BVLC Reference CaffeNet is trained on the Large Scale Visual Recognition Challenge
2012 training set (ILSVRC 2012), (Russakovsky et al., 2015)) which includes 1,000 cate-
gories with 1.2 million images. The ILSVRC 2012 data is a part of ImageNet, an image
database which contains roughly 15 million images in 22,000 categories.

Besides two minor differences, BVLC Reference CaffeNet is similar in its architecture to
the deep CNN trained by Krizhevsky et al. (2012) on ILSVRC 2010. It consists of eight
weighted layers where layers one to five are convolutional and the last three layers are fully
connected. Layers one, two, and five are followed by max-pooling layers, and the max-
pooling layers after layer one and layer two are followed by response-normalization layers.
This is different than the network of Krizhevsky et al. (2012) where pooling is done after
the response-normalization layers. Finally a 1,000-way softmax distributes its input over
the 1,000 categories. A special characteristic of this deep CNN is that two GPUs share
the work. They run on different parts of the layers and only communicate with each other
between specific layers (three to four, so four gets all input from both parts of layer three,
and between all fully connected layers). Figure 3.2 shows this architecture in detail. The
resulting network consists of 60 million parameters and 650,000 neurons.

By enlarging the dataset with label-preserving transformations, Krizhevsky et al. (2012) try
to reduce the over-fitting. On the one hand, they generate image translations by randomly
extracting 1,028 224x224 pixel patches out of the down-sampled 256x256 pixels training
set images and their horizontal reflections. The training set is therefore expanded by factor
2,048. On the other hand, Krizhevsky et al. (2012) try to combat over-fitting by altering
the intensities of the RGB channels in the training images. This is the second difference
from the BVLC Reference CaffeNet as this deep CNN is trained without the relighting data
augmentation. The publicly available model is a snapshot at iteration 310,000, whereas the
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best performance was reported by iteration 313,000.

This deep CNN is additionally trained (transfer learning) on the 840 positives and 840
negatives; 20% of the samples are randomly chosen and used for validation after training.
The training images are downsized to 256x256 pixels from which 227x227 pixel patches
are cropped, with or without reflection. The hyper parameters for the transfer learning
are adjusted as follows in comparison to the original BVLC Reference CaffeNet settings:
the learning rate is reduced from 0.01 to 0.001, and the maximum number of iterations is
reduced from 450,000 to 1,000. The weight decay (0.0005) and the step size (100,000)
are left unchanged. All convolutional and all fully connected layers are involved in the
transfer learning. Table 3.4 gives an overview of the conducted evaluation tasks using
BVLC Reference CaffeNet. CVAC contains a Python Caffe demo file, which is modified
to train and evaluate on the collected dataset. The result is stored as a list of images by
name, either classified as 0 for positive or 1 for negative. The unique ImageNet naming
convention allows the quick parsing of false positives and false negatives.

Figure 3.2: Architecture of a deep CNN by (Krizhevsky et al., 2012), with �ve convolutional and
three fully connected layers. Two GPUs work on separate parts of the layers and communicate
only after layer three and after each fully connected layer.
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Number of Expansion of training data by
Classifiers reflection of 227x277 patches?

2 NO

2 YES

5 NO

5 YES

Table 3.4: Experimental setup for four runs to examine the deep CNN BVLC Reference Ca�eNet.

The 227x227 pixels patches are generated out of the down-sized 256x256 pixels input images.
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CHAPTER 4:

Evaluation of the Results

This chapter introduces and discusses the results of the experiments with BOW and the
CNN. It shows, for both methods, remarkable results, either in terms of recall (the propor-
tion of classified true positives in comparison to all positives) and precision (the proportion
of classified true positives in comparison to all classified positives) for classification tasks
with two classes, or as percentages of correctly and incorrectly classified images for tasks
with sub-classes. It can be shown that BOW can become a robust solution when limited
training data allows the generation of strong descriptors. All computation was done on the
NPS Hamming cluster computer.

4.1 BOW with MATLAB and Two Classes: Positives and
Negatives

This section examines the BOW results of the MATLAB-based approach with positives
and negatives. It shows that the performance does not require a large dictionary. For
simplification, an experiment with, for example, 250 visual words with grid step option
and step size [16 16] is written as 250/16.

4.1.1 Results
The results of 18 experiments are presented as recall and precision in Table 4.1. The 18
parameter configurations are generated by varying the distance between grid intersection
(grid step-size) from 16 over 32 to 64 pixels for each dictionary size between 25 and 1,000.
The lowest recall with 91.94% occurs for 25/64, and the highest recall with 99.17% is
observable for the runs 100/16, 250/16, 500/16, and 1,000/16. Run 100/16 shows the
highest precision (97.01%) among all parametrizations. Given a constant grid step size, the
best precision always occurs on runs with 100 visual words. The recall improves with an
increasing dictionary size. An exception is the setup with step size [16 16] where from 100
up to 1,000 visual words, no improvement is observable.
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4.1.2 Discussion
The issue of interest for these 18 runs is the fact that the best precision is always reached
with 100 visual words. As with an increasing dictionary size the recall either remains at
a high level or increases; it is the increasing number of false positives that reduces the
precision for larger dictionary size. The model for the classifier becomes more complex
if the dictionary size rises. This can lead to overfitting, which means that the classifier
becomes fragile for new, unseen data. So, in the presented 18 runs, the model is either
not overfitted for positives, or the data from the evaluation set looks pretty similar to the
training data. But this is not the case for the negatives, where the increase of visual words
of a number higher than 100 leads to an increasing number of misclassifications.

The constant recall of 99.17% over the four highest numbers of visual words seems to
be an upper bound for the chosen training set/evaluation set constellation; three images
remain misclassified. Just including them in the training set would not necessarily produce
a better classifier with a constant 100% recall. Changing the training input means to change
the resulting cluster centers. The visual vocabulary would differ in its appearance, which
can result in a different classification outcome on the evaluation set. Table 4.2 shows the
variability of recall and precision (10 runs with 250 visual words and step size [64 64]),
given a different composition of images in the training set and the evaluation set for each
run.
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Number of Visual Words
25 50 100 250 500 1,000 Step Size

Recall 0.9722 0.9806 0.9917 0.9917 0.9917 0.9917 [16 16]

Precision 0.9162 0.9671 0.9701 0.9597 0.9520 0.9520

Recall 0.9361 0.9611 0.9611 0.9778 0.9833 0.9889 [32 32]

Precision 0.8963 0.9153 0.9505 0.9337 0.9243 0.9152

Recall 0.9194 0.9361 0.9694 0.9639 0.9750 0.9861 [64 64]

Precision 0.8922 0.9133 0.9458 0.9455 0.9360 0.9318

Table 4.1: Results for BOW with MATLAB on two classes: positives and negatives. The results

of 18 di�erent computational runs is shown in this table. For these runs the dataset was divided

into a �xed training set and evaluation set. Run 100/16 shows the highest recall and also the

highest precision. For larger grid steps the recall �nds no upper bound with the rising dictionary

size; the highest precision is always observable for a bag size of 100 visual words.

Run 1 Run 2 Run 3 Run 4 Run 5

RECALL 0.9667 0.9750 0.9694 0.9639 0.9694

PRECISION 0.9380 0.9564 0.9562 0.9507 0.9641

Run 6 Run 7 Run 8 Run 9 Run 10

RECALL 0.9694 0.9639 0.9639 0.9778 0.9694

PRECISION 0.9432 0.9533 0.9378 0.9462 0.9562

Table 4.2: Results for 10 runs with 250 visual words and step size [64 64]. Recall and precision

show some variability if training and evaluation are based on di�erent compositions of the images.
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4.2 BOW with MATLAB, Four Map Sub-Classes, and
Negatives

This section examines the BOW results of the MATLAB-based approach with map sub-
classes and negatives, addressing in detail the following research question: Are there any
special types of sub-classes that significantly weaken the classifier in its performance? With
sketches and web maps, two of such sub-classes are found. The research shows that it is
not the number of sub-class members, but rather the content quality of the images that leads
to higher misclassification rates.

4.2.1 Results
The classification results of six runs on the Hamming computer cluster is examined with
respect to the step sizes [16 16], [32 32], and [64 64] , using 500 and 1,000 visual words.
These experiments are performed parallel to the runs with two classes and the correspond-
ing results are not incorporated with respect to the definition of the dictionary size. Correct
and incorrect classification percentages are shown in Table 4.3 and Table 4.4. The low-
est misclassification rate for basic maps is 4.67%, in the parameter constellation 1,000/32.
The highest number of correct classifications can be observed for pilotage charts, indepen-
dently of the setup. For all six runs it can be observed that the sub-classes sketches and web
maps have the highest misclassification rates, pending between 11.11% and 22.5%. The
best misclassification rate for negatives is 6.11% for the constellations 500/64, 1000/32,
and 1,000/64. Comparing 500 with 1,000 visual words, no approach can be preferred.
For example, basic maps shows better results with 1,000 visual words, and pilotage charts
performs best with 500 visual words. Additionally, there is no clear choice for a special
grid step size. The intuition that a lower grid step size would perform better because it
generates more feature descriptors is not supported by the results; web maps, for example,
always perform best with step size [64 64].

4.2.2 Discussion
Sketches and web maps are two sub-classes that are found to weaken the performance of
the classifier. If the detection of map sub-classes is required by a potential analyst using this
method as the backbone of an application, their impact is significant, as these sub-classes
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are up to 20 percentage points worse in correct classifications in comparison to the other
sub-classes.

Most of the misclassified web maps were classified as sketches. In many cases, the content
of sketches is limited to the most important information that has to be communicated via
the sketch. The resulting lack of visual features also occurs in web maps with very little
geographic information (see Figure 4.1) and is related to geographical density. This density
in a map image is a result of map scale and surface objects of the covered area. In a
geographical sense, the large scale contains maps in a scale range of 1:1 to 1:600,000
(Scale (map). (n.d.)., 2015). There is definitely sufficient geographic information in a city

map of scale 1:100,000 or even 1:5,000 but maybe not in a map with scale 1:50. And a scale
of 1:5,000 might provide sufficient geographic density for feature extraction in a city map
but not in a map showing a desert region. The option of excluding web maps with very
little geographic information from the training set brings disadvantages. It would most
likely exclude sketches from being classified as web maps, but this would also exclude
the mentioned web maps with very little geographic information from this sub-class. A
possible way to reach an improvement is by subdividing web maps in additional sub-classes
with respect to the geographical density.

The second-worst-performing sub-class is sketches. One could argue that this is related to
the low number of training and evaluation images for this sub-class. But the number of
training and evaluation images for pilotage charts is as low as for sketches–105 for training
and 45 for evaluation. And pilotage charts shows the overall highest percentage of correct
classifications. So why is the pilotage charts sub-class so robust and not sketches? There
is an observable difference in the previously discussed density between the two sub-classes
(see Figure 4.2). In addition, the pilotage charts images have the largest size within the
dataset. With up to 17,601x12,741 pixels resolution they represent a total of 2.6 gigabytes
of data. The largest sketches image has a resolution of 3,599x3,474 pixels, but all 150
sketch images are represented by a data size of 15.3 megabyte; many of these images have
low resolution. Generating interest points with MATLAB’s grid method and the step size
[64 64], the difference is 294,424 interest points for sketches in comparison to 28,857,392
interest points for pilotage charts. The computation proceeds with the strongest interest
points of each sub-class/class but limited for each to an amount of only 80% of the number
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of interest point of the sub-class/class with the overall fewest interest points. This means
that 235,539 descriptors are calculated for sketches (as sketches is the sub-class with the
overall lowest number of interest points). Also, 235,539 descriptors are calculated for
pilotage charts.

Limited to the absolutely necessary information, it is the nature of most sketches that the ar-
eas for computing the descriptor around a grid-defined interest point often contain marginal
changes of brightness or poor shape information. The usage of a grid to generate feature
descriptors will generate many such descriptors; they are calculated over areas of constant
color intensities like just white or other monotone-colored image areas. For sketches, the
classifier is therefore heavily trained on visual words that fit to these areas. So a sketch-
responding part of a classifier will finally expect to see descriptors representing monotone
areas. This behavior can also be observed by looking at images of the negatives class, mis-
classified as sketches. The negatives class shows a true positive percentage between 92.78%
and 93.89% and a constant portion of 5.56 to 6.67 percentage points misclassification votes
for sketches. As opposed to the assumption made during the data collection (ImageNet cat-
egories like line or convex shape have an influence on the evaluation process because of
their geometric similarities in comparison to sketches), it is the absence of variance in the
areas a descriptor is calculated on, that leads to wrong votes. Some images misclassified as
sketches are shown in Figure 4.3. In comparison to sketches, the strongest descriptors for
pilotage charts cover much more variance and allow a more distinct description by visual
words.

But can the classifier be improved by rejecting sketches from the training? A run was
performed with setting 1,000/64; Table 4.5 shows the result. The correct classification rates
within the sub-classes show that the improvement is significant. Except pilotage charts,
which remains on its high level of correct classifications, every sub-class/class reduces the
number of misclassifications. For web maps, the portion of correct classifications increases
by 13.33 percentage points. A further observation is that, by training the classifier on one
fewer sub-class than before, a better description of the remaining sub-classes/class with the
given visual words becomes possible. For example, basic maps is improved in its number
of correct classifications not only by assigning the former sketch misclassifications to its
own sub-class, but also by identifying former assumed pilotage charts as basic maps. In
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terms of accuracy, a rise from 91.80% (best accuracy for 1,000 visual words and step size
[32 32]) to 96.59% can be observed. So, rejecting a sub-class or class can be a helpful
alternative to improve the classification results. By doing so, one thing must be kept in
mind. There is a reason that the excluded sub-class sketches was part of the classifier:
somebody wanted to find them.

500/16 Basic Maps Pilotage Charts Web Maps Sketches Negatives

Basic Maps 92.67 4.67 0.00 2.67 0.00

Pilotage Charts 0.00 97.78 0.00 2.22 0.00

Web Maps 2.50 4.17 77.50 15.83 0.00

Sketches 4.44 6.67 11.11 77.78 0.00

Negatives 0.28 0.00 0.56 6.11 93.06

500/32 Basic Maps Pilotage Charts Web Maps Sketches Negatives

Basic Maps 92.00 5.33 0.00 2.67 0.00

Pilotage Charts 0.00 97.78 0.00 2.22 0.00

Web Maps 0.00 3.33 80.83 15.83 0.00

Sketches 4.44 6.67 6.67 82.22 0.00

Negatives 0.28 0.00 0.28 6.67 92.78

500/64 Basic Maps Pilotage Charts Web Maps Sketches Negatives

Basic Maps 93.33 4.67 0.00 2.00 0.00

Pilotage Charts 0.00 100.00 0.00 0.00 0.00

Web Maps 0.83 4.17 82.50 12.50 0.00

Sketches 11.11 2.22 4.44 82.22 0.00

Negatives 0.00 0.00 0.00 6.11 93.89

Table 4.3: Confusion matrices for BOW on four sub-classes and the negatives class, computed

on 500 visual words with step sizes [16 16], [32 32], and [64 64]. Web maps and sketches are

the weak sub-classes. Although pilotage charts has the same small number of training images as

sketches, its performance is much better, based on the information available in the images.
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1000/16 Basic Maps Pilotage Charts Web Maps Sketches Negatives

Basic Maps 94.67 2.67 0.00 2.67 0.00

Pilotage Charts 0.00 97.78 0.00 2.22 0.00

Web Maps 0.83 0.83 79.17 19.17 0.00

Sketches 4.44 2.22 4.44 88.89 0.00

Negatives 0.00 0.00 0.56 6.11 93.33

1000/32 Basic Maps Pilotage Charts Web Maps Sketches Negatives

Basic Maps 95.33 2.00 0.00 2.67 0.00

Pilotage Charts 0.00 97.78 0.00 2.22 0.00

Web Maps 0.83 2.50 80.83 15.83 0.00

Sketches 4.44 4.44 4.44 86.67 0.00

Negatives 0.00 0.00 0.28 5.83 93.89

1000/64 Basic Maps Pilotage Charts Web Maps Sketches Negatives

Basic Maps 93.33 4.00 0.00 2.67 0.00

Pilotage Charts 0.00 97.78 0.00 2.22 0.00

Web Maps 0.83 2.50 82.50 14.17 0.00

Sketches 8.89 4.44 4.44 82.22 0.00

Negatives 0.00 0.00 0.56 5.56 93.89

Table 4.4: Confusion matrices of BOW on four sub-classes and the negatives class, computed

on 1,000 visual words with step sizes [16 16], [32 32], and [64 64]. The same observations can

be made as for the results with 500 visual words.

1000/16 Basic Maps Pilotage Charts Web Maps Negatives

Basic Maps 99.33 0.67 0.00 0.00

Web Maps 0.00 97.78 2.22 0.00

Pilotage Charts 1.67 2.50 95.83 0.00

Negatives 0.56 0.28 3.61 95.56

Table 4.5: Confusion matrix of a run without the sub-class sketches.
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Figure 4.1: Examples of misclassi�cations. The upper sketches are classi�ed as web maps; the
lower web maps are classi�ed as sketches.

35



 

Figure 4.2: Comparison of the largest sketch image (upper left, 3,599x3,474 pixels) with the
largest pilotage chart image (17,601x12,741 pixels). Although the large ice �elds in the Green-
land pilotage chart generate a lot of weak descriptors by using a grid approach to �nd interest
points, this image provides many additional possibilities for strong, more descriminative interest
points. The resulting descriptors will remain with much more image information than the selected
strongest feature descriptors from the sketch image. This generates an advantage for training
and evaluation which could be observed during this work.
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4.3 BOW with EasyCV
This section shows the result for BOW using ORB as a detector for experiments between
five and 1,000 visual words with exceptional recall and precision for five and 10 visual
words.

4.3.1 Results

Recall and precision are calculated for nine repetitions on shifted training set and evalu-
ation set with numbers of visual words between five and 1,000. The data assignment for
the training set and the evaluation set is made by hand to exclude a similar training set and
evaluation set setup between repetitions by chance. Table 4.6 shows the mean recall and
precision, Figure 4.4 shows the corresponding receiver operating characteristics (ROC)
curve. With ORB as interest point detector and descriptor, the setup with 500 visual words
shows the highest recall with 99.14%, but also the lowest precision (92.68%). The highest
precision can be observed for 50 visual words (93.82%); the lowest recall shows up for 10
visual words (97.93%). An exhaustive examination of possible detector/descriptor combi-
nations on the Hamming cluster cannot be solved in time as this would take several weeks.
Table 4.7 shows recall and precision of the runs on the cluster. The combination of the
Binary Robust Invariant Scalable Keypoints-detector (BRISK) and the SURF descriptor
results in the best recall (98.89%), together with the highest precision (89.90%).

Number Visual Words 5 10 25 50 100 250 500 1000

Recall 0.9796 0.9793 0.9858 0.9836 0.9861 0.9889 0.9914 0.9907

Precision 0.9360 0.9335 0.9299 0.9382 0.9335 0.9282 0.9268 0.9292

Table 4.6: Results for BOW with EasyCV on two classes: positives and negatives. The average

of nine repeated computational runs for each dictionary size is shown in this table. The good

performance with just �ve or 10 visual words is exceptional. The interest point detector and

descriptor used is ORB.
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Figure 4.3: Examples of misclassi�ed negatives after a run with 1,000 visual words and interest
point detection on grid interceptions with step size [64 64]. Many descriptors are calculated
on homogeneously colored areas (in these cases, black or white) and these images are �nally
classi�ed as sketches.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

R
EC

A
LL

 

1-PRECISION 

50 words 

100 words 

1,000 words 

500 words 

5 words 10 words

25 words 

250 words 

0.977

0.979

0.981

0.983

0.985

0.987

0.989

0.991

0.993

0.995

0.06 0.065 0.07 0.075

R
EC

A
LL

 

1-PRECISION 

Figure 4.4: ROC curve for the best performing  visual word  constellations. The highest precision  
can be reached by using 50 visual words, the highest recall with 1,000 visual words.
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Detector ORB ORB BRISK BRISK SIFT ORB

Descriptor SIFT SURF SIFT SURF SURF ORB

Recall 0.9222 0.9889 0.9889 0.9889 0.9778 0.9914

Precision 0.8557 0.8812 0.8396 0.8990 0.8889 0.9268

Table 4.7: Runs with detector/descriptor combinations using EasyCV. The combination of ORB

as an detector and descriptor outperforms the other hyper-parameter settings.

4.3.2 Discussion
The result for five and 10 visual words, using BOW with ORB interest point detector and
descriptor, is surprising as a recall of almost 0.98% and a precision of over 93.00% is an
unexpectedly good result for this low dictionary size. In comparison, MATLAB with five
visual words and step size [16 16] generates a recall of 42.50% and a 80.10% precision.
For 10 visual words, these numbers rise to a recall of 93.06% and a precision of 94.10%.
This, together with the variability in the results of the detector/descriptor combination-runs
on 250 visual words, show the need for a deeper examination of BOW’s hyper-parameter
space, if one eventually wants to find the best setting for map images.

4.4 Convolutional Neural Network
This section examines the CNN results after training on two classes, positives and nega-
tives, and after training with four map sub-classes and negatives. The last approach, again,
addresses the following research question: Are there any special types of sub-classes that
significantly weaken the classifiers in their performance? The results shows an obvious
dependency between quantity of training input and resulting performance. Data augmen-
tation, the generation of additional images out of the existing database, could be a useful
option to increase the overall performance.

4.4.1 Results
The results of four runs on the Hamming cluster computer are used to evaluate the CNN
approach for the map classification task. Given the two classes, positives and negatives,
the runs differ by the factor of augmentation of the input dataset. By activating the mirror
function, every patch is additionally mirrored, and this mirrored patch is also included into
training. Both ways result in a recall of about 99% (99.17% with no mirror, 98.89% with
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mirror); the more noticeable effect of activating the mirror option is an increase in the
precision from 90.60% to 93.44%.

The results of training and testing the CNN on four map sub-classes and the negatives are
shown in Table 4.8. No obvious improvement can be observed by using the higher aug-
mentation factor. The number of correctly classified negatives is slightly better with mirror;
among the map sub-classes, basic maps and web maps perform best. As the training data
is imbalanced, which means that the number of input images for training differs between
the classes/sub-classes, the trained CNN will be biased in a way that prefers to classify in
favor of overrepresented classes/sub-classes. This problem is examined, for example, by
Masko & Hensman (2015). The CNN is additionally trained and tested on a balanced set of
classes/sub-classes. As the last experiment of this work, this balanced approach is running
under time constraints. Therefore, no oversampling method is used, the number of training
images is 105 and the number of evaluation images is 45 for each class/sub-class. The
results can be seen in Table 4.9. For sub-class sketches up to 100.00% (no mirror) of the
contained images are classified correctly. Additionally 73.33% of the sub-class web maps
are misclassified as sketches using no mirror.

4.4.2 Discussion
For the first approach, using two classes, the impact of augmentation can be observed
for the negatives class. Having more images, because of mirroring patches, allows an
improvement of 2.84 percentage points for correct classifications. The results of the second
approach are for both ways, balanced and imbalanced, examples for limitations of CNNs.
A balanced dataset with only a few images for training will result in unreliable classifiers.
In this case a CNN classifies 100% of all sketches correctly (without mirror), but at the
same time it also classifies 73.33% of all web maps as sketches. The imbalanced dataset
causes a bias that prefers to classify data more often as members of the classes/sub-classes
with the highest number of training images. This is observable in Table 4.8, where the
classification process prefers a basic maps membership, as basic maps is the sub-class with
the largest number of training images. But a solution is at hand: balancing the dataset by
either oversampling the underrepresented sub-classes (e.g., rotating, mirroring or adjusting
contrast of the training images), or raising the number of sub-class images by intensifying
the online-search for images.
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Predicted
Mirror:NO Basic Pilotage Web Sketches Negatives

Maps Charts Maps

Basic Maps 98.67% 0.67% 0.67% 0.00% 0.00%

Pilotage Charts 28.89% 68.89% 2.22% 0.00% 0.00%

Actual Web Maps 5.00% 0.00% 94.17% 0.83% 0.00%

Sketches 22.22% 0.00% 35.56% 42.22% 0.00%

Negatives 0.56% 3.89% 2.22% 0.83% 92.50%

Predicted
Mirror:YES Basic Pilotage Web Sketches Negatives

Maps Charts Maps

Basic Maps 98.00% 0.67% 1.33% 0.00% 0.00%

Pilotage Charts 28.89% 71.11% 0.00% 0.00% 0.00%

Actual Web Maps 5.00% 0.00% 94.17% 0.00% 0.83%

Sketches 11.11% 0.00% 35.56% 48.89% 4.44%

Negatives 0.56% 1.94% 1.11% 1.67% 94.72%

Table 4.8: Confusion matrices of four sub-classes and negatives for runs with deacti-

vated/activated mirror on a imbalanced training set. Pilotage charts and sketches are the weakest

links in the chain.
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Predicted
Mirror:NO Basic Pilotage Web Sketches Negatives

Maps Charts Maps

Basic Maps 71.11% 6.67% 0.67% 22.22% 0.00%

Pilotage Charts 33.33% 42.22% 8.89% 8.89% 6.67%

Actual Web Maps 0.00% 0.00% 11.11% 73.33% 15.56%

Sketches 0.00% 0.00% 0.00% 100.00% 0.00%

Negatives 0.00% 0.00% 6.67% 15.56% 77.78%

Predicted
Mirror:NO Basic Pilotage Web Sketches Negatives

Maps Charts Maps

Basic Maps 91.1%1 4.44% 0.00% 4.44% 0.00%

Pilotage Charts 26.67% 57.78% 6.67% 8.89% 0.00%

Actual Web Maps 0.00% 0.00% 33.33% 66.67% 0.00%

Sketches 8.89% 0.00% 2.22% 88.89% 0.00%

Negatives 0.00% 0.00% 6.67% 17.78% 75.56%

Table 4.9: Confusion matrices of four sub-classes and negatives for runs with deacti-

vated/activated mirror on a balanced training set. Pilotage charts and sketches are no longer

the weakest links in the chain.
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4.5 Insights for the Research Questions

As the questions for the geographical space of interest and for the relevant sub-classes for
this work are answered in chapter 3, this section merges the discussion points of the for-
mer paragraphs to answer the remaining research questions. It addresses the impact of
sub-classes on the performance of the classifier, other factors that impact the classifica-
tion results, and thoughts about the potential of BOW and CNN for a map classification
application.

One task of this thesis is to determine whether there are any special types of sub-classes
that significantly weaken the classifier in its performance. With web maps and sketches
for BOW such sub-classes show up. But as for these sub-classes, the misclassifications
address only other map sub-classes; this impact is almost eliminated with a switch to a
two-class classification task on the negatives class and the positives class. The results of
the BOW approach can be explained for web maps with a discrimination weakness be-
tween large scale images of this sub-class and sketches. Sketches by themselves provide
very little information to calculate reliable descriptors. In comparison with the sub-class
pilotage charts, which shares with sketches the same low number of training and evaluation
images, the BOW method is able to perform outstandingly as the training images of this
sub-class allow a more distinct description by visual words. This remarkable insight rec-
ommends BOW as a solution for classification tasks on small datasets with useful content
for calculating descriptor properties.

Part of this research is to answer the question, which of the chosen methods performs
best with respect to recall and precision? For both BOW and CNN, a maximal recall
of 99.17% can be observed, which means that three positive images are misclassified as
negatives. BOW performs better with respect to precision: Its best result, 97.01%, is 3.57
percentage points better than the best result with a CNN. When the size of the training data
is increased, the precision of the CNN improves from 90.60% to 93.44%. This research
does not address whether the precision can be increased through additional inputs until
BOW is finally outperformed. The best results of the different approaches are summarized
in Table 4.10.

This work shows that several factors influence the classification results. As the research
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is not focused on an exhaustive examination of this influence, it remains for future work
to evaluate the importance of these factors in relationship to one another. For the CNN,
the results recommend a further investigation with significantly bigger training data and
balance between the training images of the classes/sub-classes to learn the correct response
of its neural network to new data. As BOW is limited in the description of the solution
space by the defined dictionary size, it relies on the usefulness of the training data for the
descriptor calculation much more than on the number of training images. This method
is fragile to similarities between and high variability within sub-classes. This problem is
quite reasonable as even human beings can have similar difficulties in discriminating dog
breeds (inter-class similarity) or recognizing, for example, strawberries as a genus of the
rose family (intra-class variability). In these cases, the limited amount of visual words of
BOW is comparable to a limitation of the memory capacity, which allows the remembering
of rough distinctive characteristics more than fine details. This work also shows that just
an increase of the dictionary size does not guarantee an improvement of the method. Over-
fitting can become an influential factor; for the chosen dataset, this can be observed for the
negatives class, where the number of true negatives decreases by increasing the dictionary
size above 100.

Finally, it is necessary to discuss whether one or both of the chosen methods become handy
applications in an analyst’s environment. Considering the results, having a tool with a
recall of 99% and a precision of roughly 95% can certainly be helpful. Assume a situation
with an input dataset of one million images; among them, unknown to the analyst, are
1,000 positives. The tool will work on this non-stop, until it finally comes up with 990
positives and an additional 49,950 misclassified negatives (false positives). At first glance,
50,940 classified positives (true and false) seems to be a lot, but it means that 949,060
images (among them 10 positives) do not have to be scanned by an analyst. Exhausting
this example a little bit, assume an analyst can visually scan and classify one image per
second (which was the computational speed for BOW with step size [16 16] and 100 visual
words), and he or she is able to do this for six hours a day (which seems difficult). This
means that he or she can classify 21,600 images per day. So classifying 50,940 images
would be done in two days, two hours and nine minutes. Classifying one million images
would be done in 46 days, one hour and 46 minutes. Therefore, the time for analyzing the
data is reduced to 5.1% of the time needed to analyze the original dataset by using one of the
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examined computational approaches and accepting the loss of 10 positive images. As both
the computational method and the analyst can work simultaneously, computational speed
is less relevant. Even assuming BOW or CNN needs three seconds to classify an image
(typical speed for BOW might be 1 second, CNNs can classify 30+ images per second),
24/7 computations allow a total of 28,800 classifications a day, which exceeds the analyst’s
daily capacity.

So in this case, both BOW and CNN can be helpful classification tools for the specific task
of map classification. Switch the prior example to 999,000 positives and 1,000 negatives.
Things change, as now most of the images classified as negatives are actually positives
(~10,000). The usage of a computational method in this situation is obviously not helpful.
Whether BOW and CNN fit to data forensic tasks depends on specific needs for such an
application in the working environment and what kind of data should be processed. A
CNN provides a huge learning capacity and therefore the possibility to cover an extremely
wide class and sub-class spectrum. BOW is a useful alternative whenever training data
is rare but useful with respect to the descriptor generation. To eventually come up with a
useful application, there must be additional research carried out as well as close cooperation
between a potential user and the developer. Both BOW and CNN have the potential to
become the computational backbone of such a product. Chapter 5 addresses this point with
ideas for future work.

Recall Precision Accuracy

BOW–MATLAB two classes 0.9917 0.9701 0.9791

BOW–EasyCV two classes 0.9914 0.9382 0.9594

CNN two classes 0.9917 0.9346 0.9597

BOW–MATLAB with sub-classes 0.9181

CNN with sub-classes 0.9097

Table 4.10: Overview of the best results for the di�erent classi�cation approaches. Recall and

precision are not necessarily results of the same parameter setting. Accuracy, which provides as

portion of correct classi�cations among all images a measurement of how close the result is to

the actual data (sum of all correct classi�cations divided by the overall number of images in the

evaluation set), is calculated for the runs with sub-classes and, for a better comparison, also for

the two-classes classi�cation runs.
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CHAPTER 5:

Conclusions and Future Work

5.1 Future Work
In this research, neither CNN or BOW are examined in its full capacity. For CNN, the
dataset has to be increased, especially for the sub-classes of sketches and pilotage charts
to guarantee balance. Knowing that sketches are rare, adding new images will be a time-
consuming challenge and could possibly be avoided by generating additional training im-
ages (e.g.,by rising the augmentation factor). The dataset could be spread out to new map
sub-classes to evaluate the learning capacity of the CNN.

Expanding the number of sub-classes in the dataset is also an interesting research task for
BOW. Given the options of training one classifier for all sub-classes and classes or gener-
ating individual models for each of them, the performance of BOW should be examined
on a dataset with a larger number of sub-classes and classes. Will BOW thereby become
too expensive to be implemented in an application? This task is asking for the impact of a
dataset spread on the necessary dictionary size to guarantee high recall and precision, and
the computational speed for evaluating data, using classifiers that are parallel or successive.

For the observed BOW problem with sub-classes, which contain only a few, low detection-
quality images, it would be interesting to see whether the classification can be improved
by combining a interest point detection algorithm with the grid step method. In combina-
tion with augmentation (which has thus far only been an option for CNN), this variation
could possibly increase the number of interest points. The interest point detection algo-
rithm should guarantee that the meaningful interest points will not be missed. Using MAT-
LAB, this approach should additionally increase the number of usable interest points for all
classes (because the number of usable interest points is bounded by the number of available
interest points for the weakest class). This could therefore affect the classification outcome
for each class.

For BOW and the sub-class web maps, the intra-class variability has an effect on the clas-
sification outcome, as shown in subsection 4.2.2. Can recall and precision be improved
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by tightening sub-classes? Most detectors are scale invariant, but changing the scale of a
map usually means changing the provided information (contained objects). For example,
zooming into a Google map reveals additional information like street names or symbols in
a first step. For even larger scales, it may be that the geographic zone of interest is just
a monotone-colored area with a single road on it. Just defining one sub-class for Google
maps would mean training a classifier for the variability of possible objects, not only in re-
lation to the geographic region with its individual properties, but also for scale-dependent
content. Perhaps it is better to divide the web maps sub-class into several additional sub-
classes to cover different scales.

Future research should also spread the map classification space by adapting differing real
world data. A photo of a map on a table is a simple example that illuminates the discrep-
ancies between the image data used in this work and something that might be more likely
to show up on an analyst’s screen. So the performance of BOW and CNN should be evalu-
ated on what may be more realistic input: images containing maps as objects among other
objects.

Aside from examination of the evaluation speed of CNN and BOW on standard computer
systems, a last recommendation for future work is the construction of a challenge-dataset
that mirrors, as far as possible, a data forensic domain. This dataset should become the
standard corpus for measuring the accuracy of a method, either on specific classes or on
the whole dataset, just as the Large Scale Visual Recognition Challenge dataset is such a
standard corpus for researchers. This would be helpful for developing methods and appli-
cations oriented towards the user’s working environment.

5.2 Conclusions
Given the task of finding geographic map images in a dataset, this thesis evaluates two
computer-based classification and object detection methods–Bag of Words and a Convolu-
tional Neural Network. The outcome of these approaches is examined on a self-constructed
dataset with 1,200 positive and 1,200 negative images. Although both methods produce re-
calls up to 99.17% on tasks with two classes, BOW’s best precision, at 97.01%, tops CNN
by over 3.5 percentage points. But the results with different amounts of training images
indicate that the precision with CNNs can be subject to further improvement by additional
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data augmentation.

With up to 100% correct classifications, BOW can generate remarkable results on sub-
classes with low numbers of training images. Rather than image quantity, the performance
of BOW depends much more on the descriptor-specific image information and the intra-
class variability. For example, this variability may occur when the geographic scale of the
map data changes within a sub-class. Facing the challenge of having a sub-class with few
images, determining the best method to create a classifier depends on the answer to the
following question: Is this data good enough for BOW or, if not, could it be numerically
increased (e.g., by augmentation) to get a good classifier by training a CNN? For the spe-
cific task of classifying the map image space as spanned by the sub-classes described in
this work, both approaches can become the backbone of helpful applications, especially if
the search for maps is comparable to the search for a needle in a haystack. Although the
evaluated methods show remarkably good results on the chosen dataset, there are still new,
unanswered questions.
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